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I. INTRODUCTION 
 

It is well known that the largest (in the sense of inclusion) possible range of a real valued metric is the closed right 

ray )[0,  in R . Now R  is a Banach space and )[0,  is a subset of R  having the specialties 

(i) it is closed, nonempty and }{)[0,  ;  

(ii) );[0,)[0,,0,,,,  byaxyxbaba R  and  

(iii) 0=)[0,, xxx  . Considering these facts into account the concept of cone metric has been 

developed. During this development, R  is replaced by any Banach space and )[0,  is replaced by any subset of 

the underlying Banach space bearing the properties like (i), (ii) and (iii). Huang and Zhang [1] introduced this 

concept and some fixed point theorems for contractive mappings were proved in this context. The results in [1] were 

generalized by Sh. Rezapour and R. Hamlbarani in [2]. Then a number of researchers, namely, D. Ili c  and V. 

Rakocevi c  [3, 4], I. Beg and M. Abbas [5], Y. Song and S. Xu [6, 7, 8], I. Altun, M. Abbas and H. Simsek [9], S. 

Radenovi c  and Z. Kadelburg [10], Ya. I. Alber and S. Guerre-Delabriere [11], N. Shahzad [12], N. Hussain and G. 

Jungck [13], Qingnian Zhanga and Yisheng Songb [14], M. Abbas and G. Jungck [15], C. Di. Bari and P. Vetro [16, 
17], C. T. aage and J. N. Salunke [18], S. Sedghi and N. Shobe [19], S. Moradi and D. Alimohammadi [20] etc. 

studied fixed point and common fixed theories for different types of contractive mappings in cone metric spaces. 

The purpose of this article is to provide a common fixed point theorem for four self-mappings and a generalization 

of Kannan fixed point theorem in complete cone metric spaces. Let’s begin with some definitions and results that 

will make the paper reader-friendly. Let E  be a real Banach space and P  be a subset of E . P  is called a cone in 

E  if  

(1) P  is closed, nonempty and }{P ; 

(2) ;,0,,,, PbyaxPyxbaba R  and  

(3) =, xPxx  , that is, =)( PP  . For a given cone P  in a Banach space E  define a 

partial ordering   with respect to P  by yx   iff Pxy  ; yx <  implies yx   but yx  , while yx <<  

will stand for )( pIntxy  . If Ezyx ,,  so that zyx <<  then zx << . Let X  be a non empty set and 

P  be a cone in a Banach space E . A mapping EXXd :  is called a cone metric if  

(1) ),(0 yxd  for all Xyx ,  and 0=),( yxd  iff yx = . 

(2) ),(=),( xydyxd  for all Xyx ,  
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(3) ),(),(),( yzdzxdyxd   for all Xzyx ,, . This mapping d  is called a cone metric on X  and 

the ordered pair ),( dX  is called a cone metric space. A sequence }{ nx  in the cone metric space ),( dX  is said to 

converges to Xx  if for any Ec  with c<<  there is a natural number N  such that cxxd n <<),(  for all 

Nn  . A sequence }{ nx  in the cone metric space ),( dX  is said to be a Cauchy sequence if for any Ec  with 

c<<  there is a natural number N  such that cxxd mn <<),(  for all Nmn , . If every Cauchy sequence in a 

cone metric space is convergent then it is called complete cone metric space. It is observed that 

)()()( PIntPIntPInt   and )()( PIntPInt  , where P  is a cone in some real Banach space and 

0>R . A cone P  in a Banach space E  is called totally ordered if for any Eyx ,  either Pyx   or 

Pxy  , that is, either xy   (in this case we write max xyx =},{ ) or yx  . We define a binary operation 

  on a totally ordered cone P  by },{= bamaxba  ,   Pba , , then it can be shown that   is associative, 

commutative and continuous. The binary operation   is said to satisfy   property if there is a positive real 

number   so that },{ bamaxba   for all Pba , . Two mappings A  and S  from a cone metric space 

),( dX  into itself are said to be weakly compatible if they commute at their points of coincidence, that is, 

SxAx =  for some Xx  implies that SAxASx = . A mapping T  from a cone metric space ),( dX  into itself 

is called sequentially convergent if convergence of }{ nTy  implies that of }{ ny , for any sequence }{ ny  in X ; T  

is said to be subsequentially convergent if convergence of }{ nTy  implies existence of a convergent subsequence of 

}{ ny , for any sequence }{ ny  in X .  

 

 

II. A FIXED POINT THEOREM 
 

Theorem:  Let ST ,  be self mappings on a complete cone metric space ),( dX  of which T  is continuous, one-to-

one and subsequentially convergent. If  

 ,,)];,(),([),( XyxTSyTydTSxTxdTSyTSxd    

 where )
2

1
[0,  then, S  has a unique fixed point.  

 

Proof. Let 0x  be an arbitrary point in X . For 1n , define the iterative sequence }{ nx  by:  

 N nxSxSxx n

nnn for,=,= 01  

 Then by the given hypothesis,  

 ),(=),( 11 nnnn TSxTSxdTxTxd   

 )],(),([ 11 nnnn TSxTxdTSxTxd    

 andso,)],(),([ 11   nnnn TxTxdTxTxd  

 ),(
1

),( 11 nnnn TxTxdTxTxd 






 

 







1
=wherek),,(= 1 nn TxTxkd  

 ),( 10 TxTxdk n  
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 Therefore for Nnm, , nm > ,  

 ),(........),(),(),( 1211 nnmmmmnm TxTxdTxTxdTxTxdTxTxd    

 ),().........( 10

21 TxTxdkkk nmm  
 

 ),(
1

10 TxTxd
k

k n


  

Then for any c<< , there is NN  such that cTxTxd nm <<),(    Nnm , . So, }{ nTx  is a Cauchy 

sequence in the complete cone metric space ),( dX  and hence convergent therein; consequently, since T  is 

subsequentially convergent, }{ nx  has a convergent subsequence }{ )(knx  converges to some point Xu . 

Continuity of T  ensures that TuTxlim kn
k

=)(


. Therefore,  

 ),(),(),(),( 0

1)(

0

1)(

0

)(

0

)( TuxTSdxTSxTSdxTSTSudTuTSud knknknkn    

 )],(),([ 0

)(

0

1)( xTSxTSdTSuTud knkn    

 ),(),()
1

( 1)(00

)( TuTxdTxTSxd kn

kn








 

 ),()
1

(),( 10

1)( TxTxdTSuTud kn 







  

 andhence,),(),()
1

( 1)(01

)( TuTxdTxTxd kn

kn








 

 ),()
1

(
1

1
),()

1
(),( 01

)(

10

)( TxTxdTxTxdTuTSud knkn













  

 


  kTuTxd kn as),(
1

1
1)( 


 

 Choose a natural number 1>N  so that ),(
1

<),( TuTSud
N

TuTSud , then PTuTSud
N

 ),(1)
1

( , where 

P  is the underlying cone. Since 0<1
1


N
 therefore, TuTSuTuTSud ==),(  . But T  is one-to-one 

therefore uSu = . 

Let Xu 1  be also a fixed point of S  then 11 = uSu . Now,  

 ),(=),( 11 TSuTSudTuTud  

 )],(),([ 11 TSuTudTSuTud    

 )],(),([= 11 TuTudTuTud   

 =  

 11 == uuTuTu  , since T  is one-to-one. So, we are done.    

 

We conclude with the following 
 

Corollary:  In the above Theorem, replacement of subsequentially convergent T  by sequentially convergent T  

does not change the conclusion; it changes the way of reaching to that conclusion. Because, in this case,  
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 .every for S, ofpoint  fixed The= 00 XxxSlim n

n



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